Current Approaches to Hearing Aid Selection

Méthodes actuelles pour la sélection des prothèses auditives

David B. Hawkins
Department of Speech-Language Pathology & Audiology
University of South Carolina

Key words: hearing aids, electroacoustic characteristics, prescription procedures

Abstract
This paper will review a variety of approaches that are in current use today to select SSPL90 and frequency response, and discuss the advantages and disadvantages of each method. The approaches to be reviewed and discussed include the following: (1) selection based solely on the pure tone audiogram, where gain, frequency response, and SSPL90 are chosen based upon vague or unspecified rationale; (2) a prescription procedure utilizing pure tone thresholds to specify a desired 2 cm3 coupler response using a median CORFIG and SSPL90 based upon a vague or unspecified rationale; (3) a prescription procedure utilizing a pure tone audiogram to specify a desired 2 cm3 coupler response using an individualized CORFIG, with SSPL90 being based upon a vague or unspecified rationale; (4) a prescription procedure utilizing a pure tone audiogram to determine appropriate output levels for the long-term spectrum of speech and output limiting levels, with the hearing aid characteristics being specified in coupler values; and (5) suprathreshold measurements made to determine the residual dynamic range and hearing aid characteristics chosen to amplify a given signal into this range.

Resume
L'auteur examine diverses approches qui sont actuellement utilisées pour choisir le SSPL90 et la réponse aux fréquences. Il mentionne les avantages et inconvénients de chacune des méthodes suivantes: (1) la sélection prothétique basée uniquement sur l'audiogramme tonal, duquel le gain, la réponse aux fréquences et le SSPL90 sont choisis en fonction de critères vagues ou imprécis; (2) une procédure de prescription qui utilise les seuils auditifs pour déterminer une réponse décrétée au couper 2 cm3 à l'aide d'un CORFIG médian, et dont le SSPL90 est basé sur des critères vagues ou imprécis; (3) une procédure de prescription qui utilise l'audiogramme tonal pour déterminer une réponse décrétée au couper 2 cm3 à l'aide d'un CORFIG individuel, et dont le SSPL90 est basé sur une mesure du sura-liminaire et précisé par les valeurs du couper acoustique; (4) une approche dans laquelle l'audiogramme tonal est utilisé pour déterminer les niveaux appropriés de sortie pour le spectre (à long terme) de la parole et pour estimer les niveaux de saturation, les caractéristiques des prothèses auditives étant précises pour un coupler 2 cm3, (5) une approche dans laquelle les mesures supra-liminaires sont considérées pour déterminer le champ dynamique résiduel, les caractéristiques des prothèses auditives étant choisies dans le but d'amplifier un signal donné à l'intérieur de ce champ dynamique résiduel.

Introduction
Approaches to hearing aid selection have undergone enormous change in the last fifteen years. There has been a clear shift from reliance on speech understanding tests to select the appropriate hearing aid, to concentration on efficient amplification of speech energy into the residual dynamic range of the hearing-impaired person. New acoustic as well as subjective methods of evaluating hearing aids have been developed. The purpose of this paper is to describe some of the current approaches to selecting hearing aids and outline some the advantages and disadvantages of each method. The approaches will be presented in a chronological order of development as well as in a hierarchy of increased sophistication.

Selection Strategy 1: Use of Only the Pure Tone Audiogram

Use of only the pure tone audiogram to select electroacoustic characteristics is probably the most common approach incorporated today. It is fuelled by the large increase in the in-the-ear (ITE) market share and the lack of sophistication of the typical hearing aid dispenser. In this approach the responsibility is left to the manufacturer to select the gain, frequency response, and SSPL90 of the hearing aid. A recent survey by Brant and Sarnweath (1991) indicated that in the Veterans Administration system in the United States approximately 80% of hearing aids were selected by the method of making ear impressions and sending these to the hearing aid manufacturer along with the pure tone audiogram.

In this approach it is uncommon for the dispenser to obtain a measure of loudness discomfort. Therefore, the manufacturer must guess at the appropriate SSPL90, relying upon
the degree of hearing loss or the relationship between gain and SSPL90 in the selected circuit. This approach relies upon the sophistication of the manufacturer and their consistency in selection of circuits. Both of these qualities have been called into question in recent years (Angeli, Seestad-Stanford, & Nerbonne, 1990).

The advantages of this approach are that it is less time-consuming at the beginning of the hearing aid selection process and that it requires little knowledge on the part of the dispenser. While perhaps viewed by different people as an advantage or disadvantage, this approach typically results in a less expensive hearing aid, as those attracted to this method tend to order less controls and often order rather simple, linear, peak clipping circuits. The disadvantages include: (1) the lack of a structured approach; (2) the dependence on the manufacturer for sophistication in circuit selection; (3) the possibility of loudness discomfort; (4) the fact that the dispenser has less opportunity to learn; (5) the lack of knowledge about the predicted real-ear response; (6) the removal of responsibility from the dispenser; and (7) the use of sophisticated circuits that tend to be utilized. It is this writer’s opinion that this approach to hearing aid selection will not best serve the hearing impaired, the manufacturer, or the hearing aid dispenser.

Selection Strategy 2: Pure Tone Audiogram and Prescription Procedure for Gain/Frequency Response; SSPL90 Approximated

The use of prescription procedures to select gain and frequency response has been popular since the mid 1970s and early 1980s, when selection methods were published by Byrne and Tonisson (1976), Berger, Haggberg, and Rane (1977), Cox (1983), and McCandless and Lyregaard (1983). The use of such prescription schemes has increased in popularity with the advent of probe microphone systems and the availability of software programs to do the calculations.

Audiogram and Prescription Procedure

The use of prescription procedures to select gain and frequency response (p. 25) is this writer’s opinion. Disadvantages may diminish if flexible tone and output controls are present and the fitting procedure is done carefully. With the various prescription formulas detailing the recommended gain and frequency response in both real-ear and 2 cm3 coupler terms, many audiologists have focused extensively on the real-ear insertion response (REIR), perhaps to the neglect of the SSPL90. If a measure of loudness discomfort is not obtained, then in the case of an ITE, the manufacturer will select a maximum output that is thought to be acceptable. If loudness discomfort levels (LDLs) are obtained, it is most common to observe the LDL being 0 dB. In using prescription formulas to determine the required 2 cm3 coupler gain and frequency response, conversion values are added to the desired REIR to yield the 2 cm3 coupler values. To make the conversion, a correction figure (CORFIG) is added to the REIR to account for the median REIR/2 cm3 coupler difference. There are several problems with this approach. First, it will be applicable only to the average adult. None of the procedures, with the exception of the Desired Sensation Level approach (Seewald, Zelisko, Ramji, & Jamieson, 1991), have CORFIGs for children as an option. Second, there are a variety of data from behavioral studies that do not agree closely with some of the theoretical CORFIGs that are used with some of the prescription procedures (Hawkins, Montgomery, Prosek, & Walden, 1987). Third, individual variability is quite large with regard to the size of the CORFIG (Hawkins, Montgomery, Prosek & Walden, 1987). The variability can be due to individual variations in middle ear impedance and residual volume of air between the earmold or ITE and the tympanic membrane. Thus, a hearing aid could be ordered assuming the average CORFIG, but it may not provide the desired 2 cm3 coupler response, either in a BTE or ITE. Bratt and Sammath (1991) recently showed variations from requested and obtained 2 cm3 coupler values when ordering with the NAL from a manufacturer with whom they “worked closely . . . to achieve the desired frequency response (p. 25).” Individual cases commonly showed errors exceeding 10 dB, especially in the higher frequencies.

Advantages to this approach include time efficiency (if software is used), the structure of a documented and published approach to frequency response selection, the presence of supra threshold measurements and the manufacturers’ consistent output, and an approach through real-ear measurement (typically included in this orientation) to verify performance of the hearing aid on the actual person. Disadvantages include the possibility that the dispenser may not obtain the desired REIR due to the use of a mean CORFIG and that loudness discomfort may occur due to the lack of carefully measured LDLs. These disadvantages may diminish if flexible tone and output controls are present and the fitting procedure is done carefully. Finally, suprathreshold measurements typically are not made to verify that appropriate loudness relationships are realized in the hearing aid selection and fitting.
Selection Strategy 3: Pure Tone Audiogram and Prescription with Customized Values

This approach, while not in common use currently appears to be gaining interest in the audiological community. Its attractiveness stems from the limitations of the previous approach, that is, the use of median CORFIG values and the lack of attention to the specification of SSPL90. A prescription procedure, such as the National Acoustics Laboratory revised procedure (Byrne & Dillon, 1986), is used to determine a desired REIR. Instead of applying the NAL mean CORFIG to arrive at the desired 2 cm³ coupler response, a CORFIG is determined for the individual person. This idea of an individualized CORFIG was first expressed by Skinner, Pascoe, Miller, and Popelka (1982) and later by Punch, Chi, and Patterson (1990). The CORFIG is generated by obtaining a REIR with a hearing aid and then placing the hearing aid (with the same volume control wheel setting) on a 2 cm³ coupler and subtracting the two gain values. This difference between the obtained REIR and 2 cm³ values, the CORFIG, is added to the NAL target values and 10-15 is added for reserve gain. The result is a full-on 2 cm³ coupler gain curve that can be used to select a BTE from specification sheets or to order an ITE. The hearing aid selected by this method theoretically should have the best chance to provide the desired REIR. Research has not yet demonstrated the superiority of this method for obtaining the desired REIR. The use of programmable hearing aids with very flexible responses may make the need for such an approach less obvious.

Following the more precise nature of the gain and frequency response selection, increased attention is directed toward the selection of SSPL90. The goal is to generate a recommended 2 cm³ coupler SSPL90 curve that is directly related to loudness discomfort measures, with the intention to ensure that the hearing aid selected or ordered will not produce uncomfortably loud sounds. The instructions for loudness discomfort measurements are particularly important. The loudness category procedure first described by Pascoe (1978) and modified by Hawkins, Walden, Montgomery, and Prosek (1987) is a structured approach, which provides anchors for the loudness judgments, and has been shown to be reliable. The choice of the transducer is important, and the Etymotic K-amp circuit returns to unity gain (at typical YCW positions) for higher inputs (essentially becomes transparent) and limits distortion that results from peak clipping can be perceived by hearing aid users and is judged as undesirable.

The importance of selecting an SSPL90 that prevents discomfort may be quite important for acceptance of the hearing aid in everyday life. Users may make maladaptive adjustments to avoid discomfort if the SSPL90 is allowed to exceed the LDLs. They may lower the volume control wheel (VCW), avoid noisy situations, use the hearing aid only in quiet, or simply stop using the hearing aid. The fact that the K-amp circuit returns to unity gain (at typical VCW positions) for compression whenever the hearing aids were being saturated. These results confirm the notion that the undesirable distortion that results from peak clipping can be perceived by hearing aid users and is judged as undesirable.

In summary, this hybrid approach has the advantages of having clear goals and targets for both gain/frequency response and maximum output. All values are expressed in 2 cm³ coupler terms for selecting and ordering, and targets for performance in the real ear are also present for both gain and output. Disadvantages include the greater time commitment in the selection process and the lack of any guarantee that the customizing will produce a hearing aid closer to the desired values.

Selection Strategy 4: Pure Tone Audiogram and a Desired Amplified Speech Spectrum

This selection strategy utilizes a pure tone audiogram as a reference point for audibility and attempts to amplify the long-term spectrum of speech to specified sensation levels. The approach is described in the literature by Seewald and colleagues (Seewald, 1988; Seewald, 1992; Seewald & Ross, 1988; Seewald, Ross, & Spin, 1985; Seewald, Ross, &.
Stelmachowicz, 1987; Seewald; Zelisko, Ramji, & Jamieson, 1991). The rationale for the particular desired sensation levels is based on a large database of adults to which auditory thresholds, comfortable loudness levels, and LDLs were obtained. One of the most attractive features of such an approach is that all necessary measurements can be made in the ear canal of the hearing aid user; thus eliminating various potentially conflicting reference levels, such as sound field, telephones, and 2 cm3 couplers. Couplers can be applied to the values to express the desired response in 2 cm3 coupler values, and they can be customized using Real Ear to Coupler Differences (RECDs), all of which can be done in commercially available software (Seewald, 1992).

The major advantage of such an approach is that it clearly outlines the entire residual auditory area and provides targets for the amplified speech spectrum and the RESR. It is flexible enough to incorporate user loudness judgments or will predict them based upon known data sets. All measurements can be specified in ear canal SPL, and yet 2 cm3 values are calculated for selection and ordering. The only disadvantage is that the procedure has not been validated as providing successful fittings with a group of hearing impaired adults. Although the particular approach of Seewald and associates has been described as an application to children, it would be helpful conceptually if the procedure provided gain and output levels that were judged acceptable by adult hearing aid users. Finally, it would be helpful if future versions of this strategy incorporated the use of compression parameters to amplify and compress into a narrower residual dynamic range.

Selection Strategy 5: Threshold and Suprathreshold Measurements to Define the Dynamic Range and Amplify the Speech Spectrum to Comfortable Loudness

This last strategy is perhaps the least used and potentially the most useful theoretically. An early approach of this type was described by Skinner, Pascoe, Miller, and Pope (1982). Perceptual judgments of the entire dynamic range are obtained. The purpose is to amplify the long-term speech spectrum to approximately the MCLs and limit the output below the LDLs. The input signal is packaged within the residual dynamic range. An individual CORFIG is obtained to assist in providing the RESR necessary to accomplish the procedure's goals. The advantage of this approach is that it clearly outlines the entire residual auditory area and provides targets for the amplified speech spectrum and the RESR.

Personal Conclusions

Some closing personal conclusions regarding selection methods for hearing aids include the following: (1) the most promising would appear to be in methods that measure suprathreshold functioning of the person with a sensorineural hearing loss; such values should be predicted for children and those incapable of making loudness judgments; (2) the selection process will be easier if all desired specifications are expressed in 2 cm3 coupler values, as this is the metric that the manufacturer understands and can measure; (3) nonlinear processing will prove optimal in the long run for nearly all persons with sensorineural hearing loss; (4) documented advantages should be utilized, such as directional microphones, clean output limiting, strong telecoils, and direct input capability; and (5) initial selection decisions should be validated with acoustic methods, such as probe microphone measurements; long-term adjustments should be made using subjective judgments.

References

The advantage of this approach is that the loudness perception of each individual is measured. This is important because the individual variability that is present in such measurements. The approach addresses gain, frequency response, limiting levels, and specifies values in 2 cm3 coupler. The application of nonlinear concepts to the residual dynamic range is particularly appealing. The only obvious disadvantages are that most children and some elderly are unable to perform loudness judgment tasks reliably, and it is not clear at this point what the optimal compression parameters should be for various abnormals loudness growth functions.
Hearing Aid Selection

