Confrontation Naming and Auditory Comprehension in Alzheimer’s Patients

Kathryn A. Bayles JiJl T. Caffrey
Department of Speech and Hearing Sciences
University of Arizona
Cheryl K. Tomoeda
Department of Speech and Hearing Sciences
University of Arizona
Michael W. Trosset
Tucson, Arizona

Abstract
Object presentation facilitated confrontation naming 27 percent of the time in mild Alzheimer’s disease (AD) and 15.9 percent of the time in moderate AD patients who were unable to name the objects from pictures. Unnamed pictures and objects were nonetheless significantly likely to be identified in an auditory comprehension task, suggesting that confrontation anomia is not caused primarily by a loss of the object’s name from the mental lexicon or perceptual dysfunction. Dissociation in performance on the object naming and auditory comprehension tasks is discussed in relation to the hypothesis that confrontation anomia in Alzheimer’s dementia patients results from progressive deterioration of semantic memory.

Introduction
An integral part of an ongoing longitudinal investigation, conducted by Bayles and associates at the University of Arizona, of the effects of Alzheimer’s disease (AD) on communicative function has been the study of confrontation naming. One hundred and eight (108) AD patients have been given a variety of tasks, among them a graduated confrontation naming task. Results of data analysis demonstrate that the majority of AD patients suffer progressive impairment in confrontation naming ability (Bayles & Trosset, 1989), a result that agrees with many published reports of progressive naming impairment in AD patients (Appell, Kertesz, & Fisman, 1982; Barker & Lawson, 1968; Bayles & Boone, 1982; Bayles & Tomoeda, 1983; Hart, 1988; Kaszniak, Wilson, Fox, & Stebbins, 1986; Kirshner, Webb, & Kelly, 1984; Lawson & Barker, 1968; Martin & Fedio, 1983; Rochford, 1971; Schwartz, Saffran, & Williamson, 1981; Skelton-Robinson & Jones, 1984). Loss of confrontation naming ability has been interpreted primarily as reflecting the deleterious effects of AD on secondary memory and perception.
or line-drawing. The effect of giving the real object to the patient after the misnaming of the pictured stimulus or line-drawing was not assessed. Barker and Lawson (1968) administered a confrontation naming task to AD patients and compared the effect of demonstrating the object to the presentation of the picture alone. They reported a four percent decrease in confrontation naming errors when the use of the object was demonstrated. They did not, however, examine the effect of presenting or demonstrating the object when the picture stimulus failed to elicit the name.

The authors reasoned that if perceptual problems significantly influence the ability to name, then having the opportunity to see and hold the actual object might facilitate naming significantly. If, however, the inability to name results primarily from deterioration of conceptual knowledge within semantic memory, then having the object in hand will not be facilitating. Additionally, if both perceptual problems and deterioration of semantic memory influence naming, then having the object will not be facilitating.

It was also recognized that yet another deficit might account for failure to name, and that is the loss of the word from lexical memory. An individual could have knowledge of the object (intact semantic memory), be able to perceive the object (intact perception), but be unable to name the object because of loss of the link between the object and its name. Performance on an auditory comprehension task (subjects select correct picture for word named by the examiner from among four choices), in which the stimulus objects were the same as those used in the confrontation naming task, might help in the interpretation of the naming performance data because it would provide information about the integrity of the link between knowledge of objects and the words used to represent them. Also, if a subject could do the auditory comprehension task, which is perceptually more difficult than confrontation naming (subject must analyze four stimulus pictures), and not be able to name on confrontation, then there would be further evidence that the misnaming did not result from misperception.

An auditory comprehension task is part of the test battery used in the longitudinal study. Thus it was possible to compare performance on confrontation naming with performance on auditory comprehension. In the auditory comprehension task, subjects are given the name of the object used in the confrontation naming task and asked to identify the colored photograph of the named object from among four alternatives. Subjects who correctly identify objects on the auditory comprehension task can be presumed to retain knowledge of these words and their referents.

The paradigm used in this study permitted the experimenters to measure the effects on confrontation naming of giving AD subjects the real objects and to evaluate the relationship of both picture and object naming to auditory comprehension of object names. Such information is useful to clinicians and caregivers who are anxious to facilitate naming and is of theoretical significance for understanding the effects of AD on various linguistic processes. The purposes of this article are: (1) to present the results of an analysis of the effect of object presentation on naming in AD patients and elderly control subjects who have failed to name the picture, (2) to compare the performance of AD patients on the confrontation naming and auditory comprehension tasks, and (3) to relate results to current popular theories of the cause of misnaming in AD patients.

Methods

Subjects

The data from 168 individuals were analyzed to evaluate the effect of object presentation on confrontation naming ability. One hundred and eight (108) subjects were diagnosed with probable AD, and 60 were normal controls. All are participants in a longitudinal study of the effects of AD on communication and cognition. To be included in the study, all participants had to meet the following criteria: (I) have a minimum of eight years of education with no history of communication/reading problems; (2) have normal intelligence as estimated by a regression equation using demographic information (Wilson et al., 1978); (3) have no history of alcohol or drug dependency; (4) have vision adequate to read newsprint; and (5) pass a speech discrimination task with 80% or better accuracy. In the speech discrimination task (Bayles, Boone, Tomoda, Sluxon, & Kasniak, 1989), subjects are asked to specify whether word pairs spoken by the examiner are the same words or different words.

Diagnosis of probable AD

Diagnosis of probable AD was made according to criteria established by the NINCDS-ADRDA task force (McKhann et al., 1984). All AD subjects had physical and neurological evaluations. The modified Hachinski scale (Rosen, Terry, Fuld, Katzman, & Pick, 1980) was administered to exclude individuals as risk for vascular dementia. Additionally, the Hamilton Depression Rating Scale (HDRS) (Hamilton, 1960) was given to mildly demented AD patients and normal controls to screen for the presence of depression. Using the cutoffs provided in the literature (Lezak, Newton, Collier, Lesser, & Schween, 1987), that is, a score greater than 12. none of the mild AD subjects failed the depression screening test. Because of the severity of their memory deficits, the responses of moderate AD patients on the HDRS were considered unreliable.
Table 1. Subject characteristics.

<table>
<thead>
<tr>
<th></th>
<th>Normals</th>
<th>Mild AD</th>
<th>Moderate AD</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>60</td>
<td>56</td>
<td>52</td>
</tr>
<tr>
<td>Age (X)</td>
<td>72.0</td>
<td>75.1</td>
<td>78.2</td>
</tr>
<tr>
<td>S.D.</td>
<td>7.3</td>
<td>8.0</td>
<td>7.4</td>
</tr>
<tr>
<td>Sex Male</td>
<td>17</td>
<td>21</td>
<td>18</td>
</tr>
<tr>
<td>Female</td>
<td>43</td>
<td>35</td>
<td>34</td>
</tr>
<tr>
<td>IQ (Est'd) X</td>
<td>113.2</td>
<td>111.2</td>
<td>110.8</td>
</tr>
<tr>
<td>(S.D.)</td>
<td>7.4</td>
<td>8.5</td>
<td>7.1</td>
</tr>
</tbody>
</table>

AD = Alzheimer's disease patients
a = group means are significantly different (p < 0.0001)

Specification of dementia severity
Severity of dementia was determined by rating on the Global Deterioration Scale (GDS) (Reisberg, Ferris, de Leon, & Crook, 1982). AD patients with a rating of three or four were classified as mild, those with five were moderate. Fifty-six AD patients were mild; 52 were moderate.

Recruitment of normal controls
The 60 elderly control subjects were spouses or caregivers of AD patients, participants in the University Medical Center hospital volunteer program, or participants in a senior citizen's nutrition and socialization program. The demographic characteristics of normal control subjects and AD patients, categorized according to dementia severity, are presented in Table 1.

Significant intergroup differences were present for age but not for sex and estimated IQ. The moderate AD subjects were significantly older than subjects in the other two groups.

Significant intergroup differences were present for age but not for sex and estimated IQ. The moderate AD subjects were significantly older than subjects in the other two groups.

Tests
The data from the administration of the confrontation naming task (CN) and the auditory comprehension task (AC) serve as the basis of this study. Intertask comparison is possible because the same 13 objects were used as stimuli in both tasks. The objects were a subset of the Boston Naming Test (Kaplan, Goodglass, & Weintraub, 1983) and were selected to represent the range of difficulty of the test. Selected objects were imageable, tangible, portable, and included: pencil, comb, hanger, mask, racquet, dart, harmonica, dominoes, knocker, stethoscope, compass, tongs, and abacus.

Confrontation naming task
The objective of this task was to name pictured objects. Stimuli were individually presented and remained in view for 15 seconds. If, after 15 seconds, the subject had failed to respond or misnamed the picture, the real object was handed to the subject. (When a response was given to pictured stimuli by AD subjects in this study, 99.2 percent of the responses were provided within 10 seconds.) Time constraints were not imposed on object naming. A separate score was calculated for the number of items correctly named to pictures and objects.

Auditory comprehension task
The objective of this task was to select, from among four, the correct colored photograph of the object named by the examiner. Subjects had to recognize the pictures after hearing their names spoken by the examiner, rather than generating the names themselves. The foils for each stimulus item were either semantically related, visually similar, or phonetically similar to the target. The task was administered immediately after the confrontation naming task, thereby eliminating potential priming effects.

Data Analysis
A primary purpose of this investigation was the evaluation of the possible effect of object presentation when a picture failed to elicit the correct name. Therefore, it was necessary to control for the AD subjects' premorbid knowledge of the stimulus objects. If the name of a pictured object was unknown to the subject premorbidly, presentation of the real object would not be facilitating. Further, if object naming failures due to premorbid knowledge were grouped with object naming failures presumed to be the result of AD, then the facilitating effect of presenting the real object could not be measured accurately and could be underrated. If, however, a presumption could be made that AD patients were likely to have had premorbid knowledge of the names of all the objects, then the effect of object presentation could be assessed validly.

To justify such a presumption, object names used in the data analysis had to be known by all normal control subjects, or known by all but one. It is reasonable to presume that AD subjects, who were similar in estimated intelligence to normal controls, would have had premorbid knowledge of these objects. Seven objects met this criterion: pencil, comb, hanger, mask, racquet, harmonica, and knocker. Performance data related to these objects were used in all statistical analyses.

Number of subjects within each group who named objects
Before interpretations can be made of the effect of object presentation on naming, it is important to verify that the instances of object naming were not attributable to only a few subjects. Therefore, the individual performance data on the seven "known" concepts were scrutinized and the number of individuals who named objects were counted.
Table 2. Crosstabulation of instances of failure to name pictures of 7 “known” items by performance on naming objects, performance on auditory comprehension, and group membership.

<table>
<thead>
<tr>
<th></th>
<th>Naming Objects</th>
<th>Auditory Comprehension</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normals</td>
<td>Mid AD</td>
</tr>
<tr>
<td>Naming Objects</td>
<td>Moderate</td>
<td>9</td>
</tr>
<tr>
<td>F = Failure</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>S = Success</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Within the normal control group, 10 subjects were presented with at least one object, and 8 were successful in naming at least one object. Thirty-six of the 56 mild AD subjects were shown at least one object and 20 had an instance of naming success. Similarly, 46 of 52 moderate AD subjects were presented with at least one object, and 21 had an instance of successful naming. In no case did one subject’s performance account for more than two instances of object naming.

Statistical treatment
The primary data set consisted of 272 instances in which a subject failed to correctly name a picture. These instances were simultaneously categorized by dementia severity group, ability to name to object, and performance on the auditory comprehension task. Results of categorization are presented in a three-way contingency table, Table 2.

The primary data set consisted of 272 instances in which a subject failed to correctly name a picture. These instances were simultaneously categorized by dementia severity group, ability to name to object, and performance on the auditory comprehension task. Results of categorization are presented in a three-way contingency table, Table 2.

Statistical analysis consisted of inferring relationships between dementia severity, object naming ability, and performance on the auditory comprehension task using a log-linear model. A log-linear model is an equation that represents the logarithms of the individual cell probabilities as the sum of terms that depend on various combinations of the involved variables (Bishop, Fienberg, & Holland, 1975). The fundamental goal of log-linear analysis is to find the simplest (most parsimonious) model that adequately fits the data. The fit of competing models was tested using the likelihood ratio chi-square statistic. The present study rejected poorly fitting models at a significance level of \(p \leq 0.05\). Computations were performed using SPSS/PC+ software (Norusis, 1986).

Results
In the most parsimonious log-linear model, five terms were found to be significant: (1) group (2) naming objects; (3) auditory comprehension; (4) group by auditory comprehension; and (5) group by naming objects. The significance of each term is presented in Table 3.

Table 3. Significance tests of log linear model.

<table>
<thead>
<tr>
<th>Model term</th>
<th>DF</th>
<th>(\chi^2)</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>1</td>
<td>159.926</td>
<td>.000</td>
</tr>
<tr>
<td>N</td>
<td>1</td>
<td>90.030</td>
<td>.000</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>44.087</td>
<td>.000</td>
</tr>
<tr>
<td>S·C</td>
<td>2</td>
<td>24.270</td>
<td>.000</td>
</tr>
<tr>
<td>S·N</td>
<td>2</td>
<td>15.981</td>
<td>.003</td>
</tr>
</tbody>
</table>

S = Subject group
N = Naming objects
C = Auditory comprehension

Group Effect
The significance of the dementia severity group main effect (S) reflects the fact that the 272 instances of failure to name a picture were unequally distributed among severity groups. In fact, normals accounted for only 13 instances (4.8%), milds for 89 instances (32.7%), and moderates for 170 instances (62.5%). Since these instances are, by definition, picture naming failures, the significant group effect may be interpreted as dramatic evidence that the ability to name pictures decreases with an increase in dementia severity.

Auditory Comprehension
The auditory comprehension main effect was significant, reflecting the unequal distribution of picture naming failures for success and failure categories of the auditory comprehension task. Seventy percent of the time, subjects were able to correctly select a photo representing the stimulus word spoken by the examiner (success on auditory comprehension). Thus, more often than not, the ability to name pictured objects was dissociated from the ability to recognize the pictured object when given the word.
Group by Auditory Comprehension

The significance of the group by comprehension interaction term (S*C) reflects the fact that performance on the auditory comprehension task varied among subject groups. Whereas normals succeeded in the auditory comprehension task in 13 of 13 instances (100%), mild AD patients succeeded in 75 of 89 instances (84.3%) and moderates in 102 of 170 instances (60.0%). Thus, the presence and severity of dementia affected the ability to recognize the referent of a spoken word stimulus.

Group by Naming Objects

The significance of the group by naming objects interaction (S*N) demonstrates the intergroup variability of the effect on naming of object presentation. Among normals, who named 9 of 13 objects, the facilitation effect was greatest in mild AD patients, who successfully named the object on 24 of 89 occasions (27.0%), the facilitation effect was considerably less. Among moderate AD patients, who successfully named on 27 of 170 occasions (15.9%), the effect was modest.

The naming by comprehension (S*N*C) interaction terms were evaluated because of an interest in the possible influence on comprehension task of the presence of other confirming data demonstrates that it is inappropriate to conclude that misnaming and lack of naming in AD patients indicate a loss of knowledge of the object in semantic memory.

Discussion

A primary research question of this study was whether object presentation facilitated naming in AD patients unable to name objects from pictures. Only a modest facilitation effect of 27% was observed in mild AD patients which diminished to 15.9% in moderate AD patients. Nonetheless, the finding of an object facilitation effect, however modest, in the absence of other confirming data demonstrates that it is inappropriate to conclude that misnaming and lack of naming in AD patients indicates a loss of knowledge of the object in semantic memory.

When it occurred, the object facilitation effect may have been due to the subject having extra time for conducting a lexical search, to the availability of additional cues associated with holding the real object, or both of these factors. Regardless of the cause, however, the rate of facilitation was sufficiently large to recommend presentation of objects.
References